11,676 research outputs found

    Mode mixing induced by disorder in graphene PNP junction in a magnetic field

    Full text link
    We study the electron transport through the graphene PNP junction under a magnetic field and show that modes mixing plays an essential role. By using the non-equilibrium Green's function method, the space distribution of the scattering state for a specific incident modes as well the elements of the transmission and reflection coefficient matrixes are investigated. All elements of the transmission (reflection) coefficient matrixes are very different for a perfect PNP junction, but they are same at a disordered junction due to the mode mixing. The space distribution of the scattering state for the different incident modes also exhibit the similar behaviors, that they distinctly differ from each other in the perfect junction but are almost same in the disordered junction. For a unipolar junction, when the mode number in the center region is less than that in the left and right regions, the fluctuations of the total transmission and reflection coefficients are zero, although each element has a large fluctuation. These results clearly indicate the occurrence of perfect mode mixing and it plays an essential role in a graphene PNP junction transport

    Double Andreev Reflections in Type-II Weyl Semimetal-Superconductor Junctions

    Full text link
    We study the Andreev reflections (ARs) at the interface of the type-II Weyl semimetal-superconductor junctions and find double ARs when the superconductor is put in the Weyl semimetal band tilting direction, which is similar to the double reflections of light in anisotropic crystals. The directions of the double (retro and specular) ARs are symmetric about the normal due to the hyperboloidal Fermi surface near the Weyl nodes, but with different AR amplitudes depending on the direction and energy of the incident electron. When the normal direction of the Weyl semimetal-superconductor interface is changed from parallel to perpendicular with the tilt direction, the double ARs gradually evolve from one retro-AR and one specular AR, passing through double retro-ARs, one specular AR and one retro-AR, into one retro AR and one normal reflection, resulting in an anisotropic conductance which can be observed in experiments.Comment: 12 pages, 7 figure

    Double quantum dot as detector of spin bias

    Get PDF
    It was proposed that a double quantum dot can be used to be a detector of spin bias. Electron transport through a double quantum dot is investigated theoretically when a pure spin bias is applied on two conducting leads contacted to the quantum dot. It is found that the spin polarization in the left and right dots may be induced spontaneously while the intra-dot levels are located within the spin bias window and breaks the left-right symmetry of the two quantum dots. As a result, a large current emerges. For an open external circuit an charge bias instead of a charge current will be induced in equilibrium, which is believed to be measurable according to the current nanotechnology. This method may provide a practical and whole electrical approach to detect the spin bias (or the spin current) by measuring the charge bias or current in a double quantum dot.Comment: 13 pages, 5 figure

    Spin-current diode with a ferromagnetic semiconductor

    Full text link
    Diode is a key device in electronics: the charge current can flow through the device under a forward bias, while almost no current flows under a reverse bias. Here we propose a corresponding device in spintronics: the spin-current diode, in which the forward spin current is large but the reversed one is negligible. We show that the lead/ferromagnetic quantum dot/lead system and the lead/ferromagnetic semiconductor/lead junction can work as spin-current diodes. The spin-current diode, a low dissipation device, may have important applications in spintronics, as the conventional charge-current diode does in electronics.Comment: 5 pages, 3 figure

    The spin-polarized ν=0\nu=0 state of graphene: a spin superconductor

    Full text link
    We study the spin-polarized ν=0\nu=0 Landau-level state of graphene. Due to the electron-hole attractive interaction, electrons and holes can bound into pairs. These pairs can then condense into a spin-triplet superfluid ground state: a spin superconductor state. In this state, a gap opens up in the edge bands as well as in the bulk bands, thus it is a charge insulator, but it can carry the spin current without dissipation. These results can well explain the insulating behavior of the spin-polarized ν=0\nu=0 state in the recent experiments.Comment: 6 pages, 4 figure
    • …
    corecore